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Impulse TechniqUe for
Structural Frequency Response Testing

William G. Halvorsen, Anatrol Corporation, Cincinnati, Ohio
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Structural frequency response testing, also known as
“modal analysis,” is becoming an integral part of the de-
velopment and testing of a wide range of industrial and
consumer products. It is an essential tool for the definition
and solution of many types of structural dynamics prob-
lems, such as fatigue, vibration, and noise. This article dis-
cusses one of the most useful techniques for experimental
structural frequency response testing — one based upon
excitation of the structure with an impulsive force. In many
situations, this is the simplest and fastest of the various
techniques commonly used today. However, the nature of
the excitation and response signals in the impulse tech-
nique requires special signal processing techniques if ac-
curate frequency response measurements are to be ob-
tained. This article discusses the application of the impulse
technique and reviews the special problems encountered
in practice and the techniques that have been developed
for dealing with those problems.

Knowledge of the dynamic characteristics of structural
elements often means the difference between success and
failure in the solution of complex noise and vibration prob-
lems. The effects of structural resonances — conditions of
relatively low dynamic stiffness — can lead to seriously
reduced effectiveness of isolation elements and result in
significantly increased dynamic response of sound radiat-
ing or vibration exposure elements. Quantitative knowl-
edge of the frequencies, damping, and mode shapes as-
sociated with structural resonances aids in understanding
how forces are generated and transmitted throughout
mechanical systems and allows intelligent evaluation of
various noise and vibration control modifications and
treatments. The determination of the resonance charac-
teristics of structures is termed “modal analysis.” The pur-
pose of this paper is to review in detail one particularly
useful technique for experimental modal analysis, a tech-
nique employing the application of an impulsive force to
the structure.

In two previous papers, the theory of modal analysis was
reviewed and a number of techniques for experimental
modal analysis were discussed, including swept-sine exci-
tation, pure-random excitation, pseudo-random excitation,
periodic-random excitation, and various forms of transient
excitation.”? The impulse technique falls into the class of
transient excitation. It deserves particular attention be-
cause, for a wide range of structures, it is the simplest and
fastest technique for obtaining good estimates of the re-
quired frequency response information. There are, how-
ever, a number of errors that can occur in the application of
the impulse technique and there are certain types of struc-
tures for which the impulse technique is ill-suited. The
major errors encountered in the application of the impulse
technique will be discussed along with the signal process-
ing and experimental techniques applicable to impulse
testing.

Theory )

Frequency Response Function. The measurement of the

frequency response function is the heart of modal analysis.
The frequency response function H(f) is defined in terms
of the single input/single output system, shown in Figure
1, as the ratio of the Fourier transforms of the system output
or response v(t) to the system input or excitation u(t), Equ-
ation 1

V()
H(f) = —2~ 1
== 9

Where V(f) Fourier transform of system output v(t)
U(f) = Fourier transform of system input u(t).
The only requirements for a complete description of the
frequency response function are that the input and output
signals be Fourier transformable, a condition that is met by
all physically realizable systems, and that the input signal
be non-zero at all frequencies of interest. If the system is
nonlinear or time-variant, the frequency response function
will not be unique, but will be a function of the amplitude
of the input signal in the case of a nonlinear system and a
function of time in the case of a system with time-varying
properties.

The frequency response function may be computed di-
rectly from the definition as the ratio of the Fourier trans-
forms of the output and input signals. However, better re-
sults are obtained in practice by computing the frequency
response function as the ratio of the cross-spectrum be-
tween the input and output to the power spectrum of the
input, Equation 2. This relationship is derived by multi-
plying the numerator and denominator of the right-hand
side of Equation 1 by the complex conjugate of the input
Fourier transform.
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U* (f) V(f), cross-spectrum between

u(t) and v(t)

G.(f) U* (f) U(f), power spectrum of u(t)
U* complex conjugate of U(f)

The usefulness of this form of the frequency response func-
tion can be seen by considering the practical single input/
single output measurement situation illustrated in Figure
2, where m(t) and n(t) represent noise at the input and
output measurement points, respectively.

The measured frequency response function H'(f) is
given by the expression:

iy = X _ V() +NG) 3
X(f)  U(f) +M(f)

where the upper case letters denote the Fourier transform
of the corresponding time domain signals.

In this form, the measured frequency response will be a
good approximation of the true frequency response only if
the measurement noise at both the input and output mea-
surement points is small relative to the input and output
signals. Multiplying the numerator and denominator of the
right-hand side of Equation 3 by the complex conjugate of
X(f) yields

where Gy, (f)
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Figure 1 — Single input/single output system.
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Figure 2 — General single input/single output measurement
situation.
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Now, if the measurement noise signals m(t) and n(t) are
noncoherent with each other and with the input signal u(t),
then the expected value of the cross-spectrum terms involv-
ing m and n in Equation 4 will equal zero, yielding

) = Gulf) - H(f)
H'(f) = =
v Guf) + Gulf) ] +( Gnlf) )
Gu(f)

where H(f) is the desired true frequency response func-
tion.

Thus, if the noise-to-signal ratio at the input measure-
ment point [G,(f)/Gf)]is much less than 1, the measured
frequency response will closely approximate the desired
true frequency response function.

It should be pointed out here that there is an inherent
bias error associated with the computation of the cross-
spectrum and the magnitude of this bias error is inversely
proportional to the number of averages in the computation.
Thus, the greater the measurement noise, the greater the
number of averages required to approach the expected
value of the cross-spectrum between the input and the
output measurement signals. With measurement tech-
niques employing many averages, the bias error can usu-
ally be reduced to an insignificant level so that it is only
necessary to minimize the noise in the measurement of the
input signal. However, if there is significant measurement
noise and only a few averages are used, then the computed
values of the cross-spectrum terms involving the noise sig-
nals in Equation 4 can be large relative to the true cross-
spectrum, with resulting large errors in the measured fre-
quency response function. In general, only a few averages
are used in the impulse technique; otherwise, one of its
major advantages — its speed — is lost. Therefore, it is
important to minimize measurement noise in both the
input and output signals when using the impulse tech-
nique. The cross-spectrum bias error and its effects are
discussed in more detail in Reference 3.

Coherence Function. There is another important reason
for computing the frequency response function in terms of
the cross-spectrum: it allows the computation of the coher-
ence function between the input and output signals. The
coherence function is defined by the equation
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According to the definitions of the power spectrum and

the cross-spectrum, the coherence function will be identi-
cally equal to 1 if there is no measurement noise and the

B

system is linear. The minimum value of the coherence
function, which occurs when the two signals are totally
uncorrelated, is 0. Thus, the coherence function is a mea-
sure of the contamination of the two signals in terms of
noise and nonlinear effects, with very low contamination
indicated for values close to 1.

Since the cross-spectrum is included in the definition of
the coherence function, the cross-spectrum bias error must
be reduced to an acceptable level if a good statistical esti-
mate of the coherence function is to be achieved. As stated
above, the number of averages used in the impulse tech-
nique is usually not great enough to significantly reduce
the bias error. However, the coherence function is still
useful for indicating the importance of noise in the impulse
technique. This is because noise in the signals causes var-
iance in the value of the coherence function with fre-
quency. This effect is illustrated in the section on mea-
surement procedures.

Display of Frequency Response. The frequency re-
sponse function is complex — that is, it has associated with
it both magnitude and phase. Therefore, it can be dis-
played in a number of forms, including magnitude and
phase versus frequency, real and imaginary magnitudes
versus frequency, and imaginary magnitude versus real
magnitude. Each of these types of displays has its own
particular usefulness. The most common type of display for
structural frequency response data is magnitude and phase
versus frequency, with the magnitude and frequency plot-
ted logarithmically. This type of display, with the mag-
nitude in terms of compliance (ratio of displacement to
force), is called a Bode plot. In this form of the frequency
response function, resonances occur as peaks in com-
pliance plots (points of maximum dynamic weakness) and
all resonance peaks of equal damping have the same width
regardless of resonance frequency. Lines of constant
dynamic stiffness have zero slope, and mass-dominated
frequency response lines have a —12 dB-per-octave slope.
Figure 3 shows an example of a Bode plot of a measured
frequency response function.

Resonances occur as nearly circular arcs in the complex
plane (real versus imaginary plot) with frequency increas-
ing in a clockwise direction around the arc. In the case of
real normal modes (which occur in systems with relatively
low damping and with resonances well-separated in fre-
quency), each resonance arc is approximately tangent with,
and lies below, the real axis and is symmetric about the
imaginary axis when the frequency response is expressed
as compliance. The complex plane plot is useful when cer-
tain types of analytical curve fitting operations are being
performed on the frequency response data. Figure 4 shows
the complex plane plot of the frequency response function
shown in Figure 3.

The plots of the real and imaginary magnitudes of fre-
quency response versus frequency are most useful when
dealing with real normal modes. In this case the reso-
nances will occur as peaks in the imaginary magnitude plot
and the real magnitude will pass through zero at the reso-
nance frequency when the frequency response is ex-
pressed as compliance. Figure 5 shows the real and imagi-
nary plots for the data in Figure 3.

The frequency response characteristics of a structual
element are determined by measuring a set of cross-
frequency response functions as discussed in Reference 1.
The cross-frequency response functions may be obtained
by exciting at one location on the structure and measuring
response at various locations, or by measuring the response
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Figure 3 — Bode plot of typical frequency response function.
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Figure 4 — Nyquist plot of typical frequency response function.
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Figure 5 — Plots of real and imaginary components of typical
frequency response function.

at a single location to excitation at various locations. The
resulting frequency response functions comprise one col-
umn of the transfer matrix in the first case, and one row of
the transfer matrix in the second case. Either set will, in
general, completely define the modal characteristics of the
structural element. In mathematical terms the set of fre-
quency response functions yields the eigenvalues and
eigenvectors, which are, in general, complex terms. The
real part of an eigenvalue is the damping and the imaginary

part is the frequency associated with a given resonance.
Each eigenvector defines a resonance mode shape.

With real normal modes, each point on a structure is
either exactly in-phase or exactly 180 degrees out-of-phase
with any other point at the resonance frequency. Certain
types of damping which are often encountered in practice
will cause the eigenvectors to have non-zero imaginary
components, resulting in complex mode shapes. When a
mode is complex, the relative phase associated with a point
on a structure is some value other than 0 or 180 degrees,
with the result that node lines (lines of zero deflection) are
not stationary. Precise description of complex modes re-
quires that some type of analytical curve fitting technique
be applied to the frequency response data.

Measurement of Frequency Response. The frequency
response function of an operating system can be computed
if the system input and output signals meet previously
stated requirements of Fourier transformability and non-
zero value, assuming the system input and response can be
measured. However, in practice there are usually multiple
inputs to the system — either several inputs at different
locations or inputs in more than one direction at a given
location. In the case of multiple coherent inputs, the com-
plexity of the analysis is greatly increased. For this reason,
and the difficulty of accurately monitoring operating in-
puts, frequency response measurements are usually made
by applying the system input “artificially” through some
type of exciter. It is in the form of the input signal and the
way it is applied to the structure that the wide variety of
frequency response testing techniques arises.

The usefulness of the impulse technique lies in the fact
that the energy in an impulse is distributed continuously in
the frequency domain rather than occurring at discrete
spectral lines as in the case of periodic signals. Thus, an
impulse force will excite all resonances within its useful
frequency range. The extent of the useful frequency range
of an impulse is a function of the shape of the impulse and
its time duration. Figure 6 shows the frequency spectra of
two square pulses of equal energy but different duration.
For a square pulse the frequencies of the zero crossings are
at integral multiples of the inverse of the time duration of
the impulse, illustrating the very important inverse rela-
tionship between the time duration of an impulse and its
frequency content.

The useful frequency range of an impulse is also a func-
tion of the shape of the impulse. Figure 7 shows three
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Figure 6 — Frequency spectra of two square pulses of equal
energy but different time duration.
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Figure 7 — Frequency spectra of three different pulses of equal
energy.

different pulses of equal energy and time duration and
their corresponding frequency spectra. By varying the
weight and hardness of an impacting device and the man-
ner in which the impact is applied, the shape and time
duration of the impulse produced can be varied to suit the
measurement requirements. Such practical aspects will be
further discussed in the section on experimental measure-
ment techniques.

Nonlinearities in Structures

Excitation of a nonlinear system by a pure-random signal
will yield the best estimate (in a mean-square sense) of the
linear system response. Excitation by a pure sine wave is
also useful for studying nonlinear systems because it al-
lows precise control of the input spectrum level. However,
the impulse technique, because of its very high ratio of
peak level to total energy, is particularly ill-suited for test-
ing nonlinear systems. Therefore, it is important to under-
stand the various types of nonlinearities that can occur in
structural systems and to be able to recognize non-
linearities in measured frequency response functions.

One of the most common types of nonlinearities encoun-
tered in structures is that due to clearance between parts.
This type of nonlinearity is frequently encountered, for
example, when testing gear systems and shafts mounted in
bearings. The effects of this type of nonlinearity on mea-
sured frequency response functions when using impulse
excitation are poor estimates of static stiffness values and
poor repeatability of the frequency response estimates.
Also, the apparent damping in the estimates will be greater
than the actual examples.

The best method of dealing with this type of nonlinearity
is to preload the system to take up clearances. Care must be
taken when this is done, however, because any preload
will change the boundary conditions of the structure and
can itself lead to erroneous frequency response estimates.
The usual approach is to apply the preload through a very
soft spring so that the resonances associated with the pre-
load lie below the frequency range of interest.

Another type of nonlinearity that is frequently encoun-
tered is nonlinear damping. Nonlinear damping effects are
usually associated with joints in the structure, where the
damping is a function of the relative displacement at the
joint. In general, the frequency response estimates ob-
tained by the impulse technique will agree most closely
with those obtained with a low level of continuous excita-

tion. However, if the point of excitation is close to a loca-
tion where nonlinear damping occurs, there will be high
relative motion at that location, and the apparent damping
in the measured frequency response will be high. In sys-
tems with low damping, this will give the measured fre-
quency response a discontinuous appearance, due to the
varying level of damping as the response to the impulse
attenuates with time. This type of nonlinearity is illus-
trated in Figure 8, which shows frequency response mea-
surements on a machine tool with different force excitation
levels. The frequency response measurements were made
with swept-sine excitation.

The third type of nonlinearity that commonly occurs in
structures is load-sensitive stiffness, where the spring rate
of elastic elements either increases or decreases with load.
The most direct way to identify this type of nonlinearity is
to measure frequency response as a function of static pre-
load and observe the change in resonance frequencies.
This type of nonlinearity is illustrated in Figure 9, which
shows frequency response measurements on a pump with
three different levels of preload.

Signal Processing

The particular characteristics of an impulsive force sig-
nal and the resulting structural response signal make the
impulse technique especially susceptible to two problems:
noise and truncation errors. While these problems occur to
some extent with other frequency response testing tech-
niques, their unique importance in the impulse technique
requires special signal processing methods.

Force Signal. It was pointed out in the previous section
that the usable frequency range for an impulse depends on
the shape and time duration of the impulse. In order to
insure that there is sufficient force over the frequency
range of interest, it is necessary that the first zero crossing
of the Fourier transform of the impulse be well above the
maximum frequency of interest. For a given time duration
the first zero crossing occurs at the lowest frequency for a
square pulse. For that type of pulse the first zero crossing
occurs at a frequency equal to the inverse of the time dura-
tion. A good rule of thumb, then, is to insure that the dura-
tion of the impulse is less than 2At, where At is the sampl-
ing interval in the analog-to-digital conversion process.
This would put the first zero crossing of the Fourier trans-
form of a square pulse at the Nyquist folding frequency,
and the first zero crossing of other pulse shapes above the
Nyquist folding frequency.

The sample length is equal to NAt where N is the
number of digital values in each sample. A typical value of
N is 1024. Thus, the duration of the impulse is very short
relative to the sample length. This means that the total
energy of noise represented in the time-sample can be on
the order of the energy of the impulse, even for high
signal-to-noise ratios. The noise problem is further aggra-
vated when employing the zoom transform, which yields
increased resolution in a given frequency band by effec-
tively increasing the sample length.

With other techniques, the effects of noise are reduced
by averaging the power spectrum and cross-spectrum func-
tions prior to the computation of the frequency response
function. However, only a few averages are usually used in
the impulse technique. Otherwise, the time advantage of
the technique is lost. Therefore, special time-sample win-
dows have been developed for the impulse technique.

At first thought it might seem appropriate to just set all
time-sample values beyond the impulse to zero, since it is
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Figure 9 — Frequency response of structure with load-sensitive
stiffness as function of preload.

known that the true signal value after the impulse is zero.
However, this would be equivalent to multiplying the sig-
nal by a narrow rectangular window. In applying any type
of window, it is important to keep in mind that multiplica-
tion by a window in one domain is equivalent to convolu-
tion of the Fourier transforms of the window and the data
in the other domain, resulting in distortion of the trans-
formed signal. This distortion will be minimized by
minimizing the width of the main lobe of the window
transform and suppressing its side lobes. However, there is
a fundamental conflict between these requirements and
the reduction of noise in the time-sample because both the
width of the main lobe and the amount of noise reduction
are inversely proportional to the width of the window in
the time domain. To further complicate the situation, sup-
pression of the side lobes is generally achieved at the ex-
pense of broadening the main lobe.

A good compromise has been arrived at in practice in the
form of a window with unity amplitude for the duration of
the impulse and a cosine taper, with a duration of 1/16 of
the sample time, from unity to zero. This window is shown
in Figure 10. Figure 11 shows the results of applying the
force window to an impulse signal with significant mea-
surement noise. Comparison of the computed frequency
response functions with and without the window applied
shows that the window substantially improves the fre-
quency response estimate.

Response Signal. Noise problems may also be encoun-
tered in the response signal, particularly when dealing
with heavily damped systems and when using zoom trans-
form analysis. In both cases the duration of the response
signal may be short relative to the total sample time, so that

noise may comprise a significant portion of the total energy
in the time-sample even with relatively high signal-to-
noise ratios. Another error in the response signal that is
encountered when testing lightly damped structures oc-
curs when the response signal does not significantly decay
in the sample window. In this case the resulting time-
sample is equivalent to multiplying the true response sig-
nal by a rectangular window, with the result that the fre-
quency resolution may not be sufficient to resolve indi-
vidual resonances.

An exponential window has been developed to reduce
the errors that occur in both situations described above.
The window shape is shown in Figure 12. The window
decays exponentially from 1 to a value of 0.05 in the sample
time. It can be applied directly to the time-sample of the
response signal or to the impulse response function. As
with all windows, the exponential window does change
the resulting measured frequency response function; but
its only effect is to increase the apparent damping in the
resonances. It does not change the resonance frequencies
and, because the effect of the exponential window is the
same on all frequency response measurements, it will not
alter the measured mode shapes if applied to all measured
frequency response functions. In addition to reducing
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Figure 10 — Force window.
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Figure 13 — Effect of exponential window in reducing mea-
surement noise. a. Measured frequency response without win-
dow. b. Measured frequency response with window applied.

noise and truncation errors, the exponential window will
also reduce errors which often occur when testing lightly
damped systems in which the damping varies with the
measurement position on the structure.

Because the exponential window increases the apparent
damping in the resonance modes, there is a tendency of the
window to couple closely spaced resonance modes. Zoom
transform analysis may be required in some cases to allow
sufficient resolution of closely spaced modes when using
the exponential window.

The use of the exponential window for reducing noise
effects in the response signal is illustrated in Figure 13. In
this case the structure is fairly heavily damped, so that the
response signal decays substantially in the first part of the
time-sample. It is seen that the application of the window
provides a very noticeable smoothing effect on the mea-
sured frequency response function. Notice also that the
window has not changed the resonance frequencies.

Zoom Transform. Zoom transform analysis is discussed
in some detail along with several examples in Reference 2.
It is a very valuable tool in impluse testing, as it is in other
frequency response measurement techniques. The effect
of the zoom transform is to increase the resolution of the
analysis by allowing independent selection of the upper
and lower frequency limits of the analysis band. With the
zoom transform, for example, it is possible to perform an
analysis in the frequency range from 900 to 1000 Hz as
opposed to the corresponding base-band range of 0 to 1000
Hz, resulting in a 10-to-1 increase in resolution, for a given
sample size N, in the 900 to 1000 Hz band. Because of the
greatly increased resolution possible with the zoom trans-
form, it can be effectively used in frequency response test-
ing to separate closely spaced resonance modes. This is
illustrated in Figure 14, which shows a base-band fre-
quency response measurement from 0 to 1000 Hz and a
zoom transform analysis of the frequency response in the
range from 260 to 340 Hz.

There are two important effects of the zoom transform in

Log Complisnce
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Figure 14 — Use of zoom transform for separation of reso-
nances. a. Base-band measurement. b. Zoom transform analysis.
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Figure 15 — Use of complex exponential curve fit to reduce

measurement noise effects. a. Force spectrum with measure-

ment noise. b. Analytically derived curve. c. Force spectrum
with measurement noise reduced.




the impulse technique, both associated with the resulting
increase in sample time. The first effect is to make possible
much better estimates of damping in lightly damped sys-
tems. This is due to the reduction of truncation errors in the
sampled response signal. The second effect, mentioned
previously, is aggravation of the noise problem in both the
input and response signals. The second effect makes it es-
sential that force and response windows be applied to the
data in most cases when using the zoom transform with the
impulse technique.

Curve Fitting. Cases of extreme measurement noise re-
quire special signal processing techniques beyond the ap-
plication of sample windows. One technique that has been
found to be very useful in practice is to analytically curve
fit the data. Figure 15 illustrates the application of a com-
plex exponential algorithm to a force signal with a signal-
to-noise ratio of 1. (The complex exponential algorithm is
discussed in some detail in Reference 4.) Figure 15a shows
the spectrum of the measured force signal and Figure 15b
shows the analytically derived spectrum fitted to the data
with five degrees of freedom. The quality of the fit is seen
in comparing the analytical curve with the spectrum of the
force signal with the measurement noise reduced, shown
in Figure 15c.

Equipment Requirements

The measurement set up for the impulse technique is
shown schematically in Figure 16. The force is applied to
the structure by an impactor through a load cell and the
response is measured by a suitable response transducer.
After passing the force and response signals through signal
conditioning equipment, including appropriate amplifiers
and anti-alias filters, the signals are digitized. The digitized

signals are then Fourier transformed, the appropriate sam-
ple windows are applied, and the cross-spectrum and the
two power spectra are computed and averaged. Finally, the
frequency response and coherence functions are computed
from the averaged power and cross-spectra.

The particular characteristics of each element of the test
set up are described below. In addition to their individual
characteristics, it is especially important that all elements
be linear and have low noise when used in the impulse
technique.

Impactors. The characteristics of the impactor determine
the magnitude and duration of the force pulse which, in
turn, determine the magnitude and content of the pulse in
the frequency domain. The two impactor characteristics of
most importance are its weight and tip hardness. The fre-
quency content of the force is inversely proportional to the
weight of the impactor and directly proportional to the
hardness of the tip. Since the weight also determines the
magnitude of the force pulse, the impactor is usually cho-
sen for its weight and then the tip hardness is varied to
achieve the desired pulse time duration. The weight of
impactors commonly used in practice varies from fractions
of an ounce, for ball bearings used for very high frequency
testing of small structural elements such as turbine blades,
to hundreds of pounds for impactors used in testing large
structures. In any given measurement situation there is a
limit to the weight of the impactor beyond which multiple
impacts cannot be avoided. This limit is a function of the
inertia of the impactor and the response of the structure.

In most cases the impactor is in the shape of a hammer
and the impacting is done by hand. Figure 17 shows a
collection of impact hammers and tips that are applicable
to a wide range of structures. Figures 18a and 18b show the
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Figure 16 — Equipment set-up for frequency response testing.

frequency spectra of the force impulse produced with a
hammer with different tips and with mass added to the
hammer.

The magnitude and time duration of the force pulse
depend on the dynamic characteristics of the structure at
the impact location as well as the hammer characteristics.
For example it may be impossible to excite a weak struc-
ture such as thin sheetmetal with a sufficiently short dura-
tion impulse and still maintain the desired force magnitude
using an impactor. The manner in which the impactor is
applied to the structure also affects the magnitude and
width of the pulse. It is important that there be moderate
consistency in the impact from one sample to the next to
insure that the proper frequency content of the force pulse
is maintained and that the maximum signal-to-noise ratio is
achieved without instrumentation overload.

Measurement Transducers. At least two transducers are
required to obtain calibrated frequency response mea-
surements: a force transducer and a response transducer.
Triaxial measurements, of course, require three response
transducers. The force transducer may either be part of the
impactor or be mounted directly onto the structure under
test. If the force transducer is mounted on the structure,
then its mass-loading effects on the structure must be ac-
counted for. If it is mounted on the impactor, then it is
necessary to calibrate the impactor/transducer combina-
tion, because the actual sensitivity of the transducer on the
impactor can vary from its independent sensitivity by as
much as 30% due to the impactor tip characteristics. Cali-
bration of impactors is discussed in detail in the Appendix.
The response transducers used in impact testing are usu-
ally accelerometers, but any suitable response transducer
may be used. Displacement probes and microphones are
sometimes used when transducer contact with the struc-
ture is undersirable.

Signal Conditioning Equipment. The signal condition-
ing equipment consists of the appropriate transducer
amplifiers and the low-pass filters required to prevent
aliasing errors. Linearity of this equipment is important
because of the nature of the force and response signals, but
the two characteristics of special importance in impact test-
ing are their signal-to-noise ratios and their response to
overloads. The importance of low measurement noise has
already been discussed. The response to overloads is im-
portant because it is desirable to have the amplitude of the
force and response signals as high as possible relative to
the input range of the equipment in order to minimize
noise, and variations in the impacting can frequently cause
overloading. It is essential, therefore, that overloads be
recognizable in the output signals. Some charge amplifiers
have multiple amplifier stages with characteristics such
that if the input stage is overloaded the succeeding stages
give the signal a nearly normal, unclipped appearance,
making it very difficult to detect overloads. This can lead to

very poor estimates of frequency response.

Anti-alias filters can also disguise overloads. For this rea-
son it is good practice to by-pass the filters and examine the
signals for overloads with the analyzer set on its maximum
frequency range when preparing for a test.

Analysis System. The analyzer consists of analog-to-
digital converters and a system for performing a discrete
finite Fourier transformation and the subsequent averaging
and data manipulation required to compute the frequency
response and coherence functions. The dynamic range of
the analog-to-digital converters is determined by the
number of bits in the digital code used in the conversion
process. Most converters in common use have sufficient
dynamic range for the impulse technique, but it is impor-
tant that the input range of the converter be properly set for
the force and response signals in order to keep the digitizer
noise to a minimum.
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Figure 18 — Force spectra produced with various combinations
of hammer weights and tip materials. a. Hammer with no added
mass. b. Hammer with added mass.




Transducer Calibration

The calibration of a load cell is altered when it is used as
part of an impactor. The force actually measured during an
impact is the force across the load cell. The force input to
the structure, on the other hand, is the force between the
impactor tip and the test structure. The ratio of these
forces depends upon the effective mass of the impactor
and the tip. The effective mass of the impactor depends
upon its inertia during the impacting operation. This inertia
is governed by the mass distribution of the impactor to a
large extent and to a smaller extent on how it is swung.
The effective mass of the tip depends on both its mass and
its material characteristics. During the impacting operation
the side flow of the material tip contributes to its effective
mass. Therefore, the surface condition of the structure
being tested will affect the inertia characteristics of the
impactor tip. For example, impacting a pointed surface will
cause a different amount of side flow and a
correspondingly different calibration than impacting a flat
surface. The ratio of the actual force to the measured force
is given by the following equation.

Fa. M

F.. M-M, A-1

where F, = actual force input to structure
F.. = measured force
M = effective mass of impactor plus tip
M, = effective mass of tip.

Effective mass is defined as a rigid mass which would
generate the same force when acted upon by the same linear
accleration.

For a given impactor configuration and testing condition it
is impossible to analytically determine the effective mass of
the impactor components. Therefore, the impactor must be
calibrated against a known source. The most straightforward
calibration method is to impact a standard load cell. The
frequency response between the load cell in the impactor
and the standard load cell can be measured using the Fourier
analyzer. This frequency response will determine the
impactor calibration. The complete frequency response
function can be used as a calibration curve, or a single
average value can be determined for a given frequency range
as a calibration constant.

There are several problems associated with the standard

load cell calibration method. One problem is associated with
the fact that the impact surface cannot be easily duplicated.
For soft hammer heads, this can cause errors as high as 5 to
10% in the calibration. Another problem is that any impacting
surface applied to the standard load cell acts as an inertia
block in the same manner as the tip on the impactor. Any
vibration of the structure upon which the standard load cell is
mounted causes the load cell to act as an accelerometer
because of the mass of the impacting surface. This might
appear to be a very small error, but the very small signal
generated by the accelerometer effect acts for a long time
compared to the very short impact. Therefore, the standard
load cell should be mounted on a very stiff, highly damped
surface, and the mass of the impacting surface should be
kept to a minimum.

A second and more desirable calibration method is one
that employs a large inertia block of known mass. The mass
is mounted on very soft springs such that the frequencies of
its rigid body modes are very low. A servo accelerometer, or
one that can be calibrated in the earth’s gravitational field, is
mounted on the mass. Then if the impact force is applied
through the center of gravity of the mass the force can be
determined directly from Newton'’s law, or

F = ma A-2

where m is the known mass and a is the acceleration of the
mass measured with the servo accelerometer. The
accelerometer is mounted on one side of the mass and an
impact surface similar to the testing surface is mounted on
the other side. The impact force is applied and the frequency
response measured between the accelerometer and the load
cell. A very good low-frequency calibration can be obtained
using this technique. The frequency range is limited by the
frequency response of the accelerometer and the
frequencies of the longitudinal modes of the mass. For
higher frequency ranges, smaller masses and higher
frequency accelerometers are used. In this case, the
accelerometer frequency response should be determined by
calibrating it against a standard accelerometer if possible.
The techniques described above are used for determining
an absolute calibration of the impactor. However, for those
cases where a frequency response measurement is desired, it
is useful to calibrate the load cell/response transducer
combination. This can be done by mounting the response
transducer on the calibration mass in place of, or in
conjunction with, a servo accelerometer. In this manner the

There are several types of analysis systems being used
today for frequency response testing. One type of system
utilizes time sharing access to a large central computer to
perform part or all of the Fourier transformation and data
manipulation tasks. Other types of analyzers perform all
Fourier transformation and data manipulation on site,
either in a hard-wired system or a dedicated mini-
computer. Any of these various types of systems can be
used in the impulse technique. The speed and accuracy of
the analysis depends on the particular characteristics of the
system. For general use in impact testing it is very desira-
ble that the system have zoom transform capability and be
able to apply the appropriate sample windows to the data.
It is also desirable that the analyzer have analytical curve
fitting capability in order to handle data with high mea-
surement noise and assist in extracting modal parameters
from measured data.

Measurement Procedures
Equipment Calibration and Set Up. The first step is to
assemble the proper signal conditioning and analysis

equipment as discussed above. Next, the impactor and the
force and response transducers are selected. Then, with
the anti-alias filters by-passed and the analyzer set at a high
enough frequency range to avoid aliasing errors, the mass
and tip hardness of the impactor are varied to give the
desired magnitude and duration of the force pulse at all test
locations on the structure. The impactor is then calibrated
using procedures outlined in a subsequent section. Next,
the input ranges of all signal conditioning and analysis
equipment are set to achieve the maximum signal-to-noise
ratio without overloading.

Frequency Response Testing. The first step in the test-
ing program is to make frequency response measurements
at a number of locations on the structure so that the impor-
tant resonances can be identified. It may be desirable to
make estimates of modal damping values at. this time in
addition to determining the important resonance frequen-
cies. Analytical curve fitting routines are sometimes help-
ful for these tasks.

The next step is to determine the location or locations to
be used for the stationary transducer during the mode




response transducer can be calibrated directly against the
servo or a joint calibration with the load cell can be obtained.
Thus a calibration constant or a calibration function for the
ratio of acceleration-to-force, velocity-to-force, or
displacement-to-force can be obtained for the load
cell/response transducer combination. .

The objective is to compute a calibration function that
when divided into a measured frequency response function

correction with the calibration function. The circles indicate
the true frequency response of the mass (i.e., its mass line).
Note that both the amplitude and phase of the measured
frequency response have been corrected.

If smoother calibration functions are desired, the
measured functions can be analytically curve fitted.

It should be noted that with this calibration technique any
type of transducer (accelerometer, velocity, or displacement)

will yield an accurate estimate for the true frequency
response function

where H(f) = true frequency response

For a freely supported rigid mass, the true frequency
response between the input force and the acceleration
response is equal to the inverse of the mass at frequencies
well above its rigid body modes:

wherem =

Let the measured frequency response between the force
input and the acceleration response of the calibration mass
be B,(f) in units of volts per volt. Then the calibration
function is given by the equation

where B,(f) = measured frequency response in volts/volt

The

transducers are given in equations A-6 and A-7.

where

volt

where B{f) = measured frequency response in volts/volt
The measured calibration function for an impactor/velocity
transducer combination is shown in Figure A1. Figure A2
shows the measured frequency response of a mass, using the
manufacturer’s supplied calibration constants for the
transducers, and the measured frequency response after

can be made to look like any other type by using the
appropriate equation for the calibration function.

= 1 . ’
H(f) = ull) H'(f)
H'(f) =
Calf) =

measured frequency response
calibration function for accelerometer

1
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mass of calibration block

Amplitude, volts/voits

1072

1
10° 10 107
Frequency, Hz

A-5

Figure A1 — Calibration function computed for impactor/velocity
transducer combination.
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Figure A2 — Comparison of frequency response measured on known
mass with and without correction function applied.

shape analyses. These locations can be determined from
the initial frequency response measurements. In impact
testing, the response transducer is usually the stationary
one and the impact is applied at suitable locations on the
structure to define the resonance mode shapes.

It is good practice to monitor the force signal throughout
the test program to reject poor measurements. One prob-
lem to look for, of course, is signal overload. Another cause
for rejection is multiple impacts within a data sample. Mul-
tiple impacts sometimes occur, for example, when testing
weak, lightly damped structures that bounce back against
the impactor before it can be drawn away after the initial
impact. Multiple impacts should be avoided because the
resulting frequency spectrum will have zeros due to the
periodic nature of the signal. In other words, very low
levels of force will occur at certain frequencies, with re-
sulting poor signal-to-noise ratio at those frequencies.
Further errors are introduced when sample windows are
applied to multiple impact data because the windows as-
sume a single-impulse form.

The coherence function is also helpful in monitoring the

quality of the frequency response measurements. It was

‘pointed out previously that the number of averages used in

the impulse technique was not sufficient in most cases to
significantly reduce the cross-spectrum bias error. How-
ever, noncoherent noise in the measured signals will in-
crease the variance of the coherence function, giving it a
“noisy” appearance. This effect is illustrated in Figure 19,
where the noise effects are apparent in the coherence func-
tion in the vicinity of the anti-resonance frequencies. This
is due to the low level of the response signal at the anti-
resonances and the correspondingly reduced signal-to-
noise ratio.

For each frequency response measurement the appro-
priate signal processing techniques are used to reduce the
effects of noise and to achieve the desired frequency resol-
ution. For mode shape analysis some type of curve fitting
may be required in some cases to extract the modal coeffi-
cients. Common practice with the impulse technique,
however, is to use the quadrature (imaginary) component
of the frequency response to compute the mode shapes, as
this gives satisfactory results in most cases.
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Figure 19 — Measurement noise effects in coherence function.

Examples

Example No. 1. This example compares the results of
frequency response measurements made with the impulse
technique and the more traditional swept-sine technique.
The measurements were made on a milling machine to
determine the frequency response between the workpiece
and the cutting tool. For the impact tests the force was
applied to the workpiece and the relative response be-
tween the workpiece and the cutting tool was measured.
The analysis was performed using a digital Fourier
analyzer. For the swept-sine tests a hydraulic exciter was
used to apply a force between the tool and the workpiece
and the absolute motion of the workpiece was measured.
This analysis was performed on an analog transfer function
analyzer. The resulting frequency response measurements
are shown in Figure 20, and it is seen that there is very
good agreement between the results produced with the
two methods.

The frequency response measurement using the impulse
technique was based on only one impact, and the impact
and analysis took only about two seconds to complete. This
compares to a minimum of ten minutes required to perform
the swept-sine analysis. Additional time savings were
realized in the test set up. For the impact test no fixturing
or elaborate exciter system was required. It was, however,
necessary to insure that all backlash had been taken up in
the milling machine. This was achieved by impacting the
machine several times before making the measurement
impact.

Example No. 2. The impulse technique can often be
used to measure the frequency response of an operating
system. This is usually not possible with other techniques
because of the transducer and exciter fixturing that must be
attached to the structure. This example discusses the ap-
plication of the impulse technique to the frequency re-
sponse analysis of a grinder.

An aluminum disc was manufactured and installed to
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Figure 20 — Comparison of frequency response functions mea-
sured with swept-sine excitation and impulse excitation.
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Figure 21 — Comparison of frequency response functions mea-
sured on hydrodynamic grinder with spindle rotating and with
it stationary.

simulate the grinding wheel. The problem of applying a
purely radial impact to the rotating wheel was solved by
suspending a light teflon flap such that it rode on the
periphery of the aluminum disc. When the disc was im-
pacted, the radial impulse was transferred to the disc while
the teflon flap prevented any tangential component from
being transmitted to the rotating disc. A displacement
probe was mounted on the non-rotating workpiece to mea-
sure the relative motion between the grinding wheel and
the workpiece. The frequency response was measured for
the grinder both with the spindle rotating and with it sta-
tionary. The resulting frequency response measurements
are shown in Figure 21. This figure clearly shows the effect
of the hydrodynamic spindle on the system response.

Summary

_ The impulse technique is generally the fastest and
easiest method of exciting a structure for frequency re-
sponse testing. In some cases it is the only practical
method of exciting a structure. However, the particular
characteristics of the resulting force and response signals
often lead to serious noise and signal truncation problems
that require special signal processing techniques to over-
come. Also, the impulse technique is ill-suited for fre-
quency response testing of highly nonlinear structures and
certain other types of structures.

The major use of the impulse technique is in problems
where moderately accurate estimates of modal parameters
and mode shapes will suffice. This includes a wide range
of structural dynamics problems involving fatigue failures,
vibration, and noise. It generally does not produce results
of sufficient accuracy for use in developing system simula-
tion models.

As people involved in structural frequency response test-
ing develop confidence in applying the impulse tech-
nique, it is expected to become the most widely used exci-
tation technique.
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